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Abstract

A computational method for interfacial failure modeling in composite material systems using cohesive elements is

developed. This method is based on phenomenological cohesive zone models implemented within an implicit ®nite

element framework as cohesive elements. Dynamic 2D and 3D cohesive elements have been developed and are used to

simulate a compressive shear strength (CSS) test. The CSS test is employed in the polymer industry to measure polymer/

substrate adhesion. The computational framework is ®rst veri®ed against existing analytical solutions for dynamic

crack growth in double cantilever beam specimens. The phenomenon of stable crack growth followed by unstable crack

growth observed in the CSS experiment is simulated. Various crack growth behaviors, obtained for di�erent sizes of the

initial pre-¯aw along the interface, are studied. The phenomenon of dynamic crack ``pop-in'', consisting of dynamic

crack growth followed by crack arrest and stable crack growth, is investigated. The in¯uence of the cohesive zone model

parameters on crack ``pop-in'' as well as stability of crack growth are studied. A 3D dynamic simulation of a square

plan form of CSS test is performed. The 3D analyses reveal the mixed-mode behavior in crack front growth along the

interface and local ``pop-through'' of the crack front near the free edge of the CSS test specimen. Ó 2000 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Composite multi-layered material systems are being employed increasingly in high-performance engi-
neering applications. The mechanical performance and reliability of these material systems is directly re-
lated to the strength or fracture toughness of their interfaces under quasi-static and dynamic loading
conditions. Complexities in the mechanics of interfacial cracks make the de®nition and extraction of
fracture parameters a formidable task, even for linear elastic materials. Much of the literature on this topic,
reviewed brie¯y below, is based on asymptotic analyses of near-crack-tip ®elds. Crack propagation in
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polymers and polymer interfaces is often accompanied by nonlinear mechanical behavior and attendant
energy loss at many length scales. These range from bond rupture at the ®nest length scale, through crazing,
chain pull-out and cavitation at the meso scale, to bulk inelastic losses. Studies of interfacial fracture in the
presence of such mechanical characteristics are few and di�cult to analyze using conventional energy re-
lease rate or stress-intensity approaches to fracture mechanics. Recent developments of the cohesive zone
approach to fracture o�er an alternative method for treating such a material complexity in interfacial
fracture. When implemented as cohesive elements in a computational ®nite element code, this approach
allows one to analyze polymer fracture governed by large inelastic deformation and dissipation at many
length scales. The main aim of this paper is to present the development of the cohesive element technique
for polymer interfacial fracture in the context of implicit ®nite element computations.

The use of cohesive zone models was pioneered by Barenblatt (1962), Dugdale (1960), for fracture in
elastic, elastic±plastic materials and Knauss (1973), Schapery (1975) for fracture in viscoelastic materials.
The cohesive zone model is speci®ed as a force-separation relationship. For linear elastic materials, the
integrated work of separation speci®es the fracture resistance, C0. However, the cohesive zone model in-
volves additional parameters, e.g., a characteristic opening displacement or peak stress. This additional
parameter governs the cohesive zone length that de®nes an extended crack-tip region representing various
fracture processes. Cohesive zone modeling of fracture has recently been used in a ®nite element framework
by, among others, Needleman (1990a,b), Tvergaard and Hutchinson (1992), Xu and Needleman (1994,
1995, 1996), Camacho and Ortiz (1996) and Espinosa et al. (1998) for studying fracture in elastic±plastic
and brittle solids. Needleman (1990a,b) employed a cohesive zone interface model within an implicit static
solution procedure to investigate numerically the problem of decohesion between an elastic±viscoplastic
block and a rigid substrate. Xu and Needleman (1995, 1996) used cohesive elements within a 2D explicit
solution scheme to perform a numerical study of dynamic interfacial crack growth along and away from the
interface in a bimaterial system.

Several studies of interfacial fracture in the literature are based on energy release rate and stress intensity
factor methods. Several researchers have proposed phenomenological interfacial fracture toughness criteria
as a function of the relative amounts of mode I and mode II conditions at the interface (Hutchinson and
Suo, 1992). The majority of the work on interfacial fracture assumes that crack-tip nonlinear zones are
small and contained within the elastic stress ®elds characterized by stress intensity factors, ``small scale
yielding''. It is not clear that these approaches can be applied to analyze interfacial fracture experiments
involving nonlinear material behaviors, ®nite strains, and dynamic crack propagation conditions. An al-
ternative approach is the use of cohesive zone models to simulate interfacial failure. In a recent study,
Swadener and Liechti (1998) used a cohesive zone model for studying interfacial failures in epoxy/metal
interfaces. They demonstrated that a cohesive zone model could successfully account for the variation in
the experimentally measured macroscopic fracture toughness as a function of mode mixity. A computa-
tional method employing cohesive zone models through cohesive elements can be attractive for studying
interfacial failures as it would obviate the need for several simplifying assumptions as required with the
energy release rate and stress intensity factor methods.

There are several advantages to using cohesive elements for computational modeling of interfacial
fracture. The work required to separate the interface is speci®ed directly by the cohesive model. Crack
propagation in elastic materials is consistent with criteria based on critical energy release rate or stress
intensity factors. However, the cohesive zone approach applies naturally to crack propagation accompa-
nied by nonlinear deformation, obviating the need for separate crack initiation and propagation criteria
based on the surrounding displacement and stress ®eld solutions. The speci®cation of fracture and bulk
constitutive behavior is independent. Therefore, the in¯uence of bulk material response on globally mea-
sured fracture behavior can be separated from the direct e�ect of changing fracture mechanism. This is
particularly useful in treating the e�ects of specimen geometry to extract a material-based fracture resis-
tance. The implementation of cohesive elements is independent of the elements that represent the bulk. As a

7282 P. Rahul-Kumar et al. / International Journal of Solids and Structures 37 (2000) 7281±7305



consequence, one can handle di�erent types of inelasticity, e.g., elasto-plastic, rate-sensitive viscoelastic/
viscoplastic, and di�erent simulation procedures (static, dynamic, etc.)

The emphasis of the analyses presented here is to demonstrate the above mentioned advantages of the
cohesive element technique. This is achieved by using the technique to study crack growth in a compressive
shear strength (CSS) test. The CSS test is used in the polymer industry to extract interfacial adhesion
between polymer and glass in glass/polymer laminates. Using the CSS test as a vehicle, various crack
growth behaviors along the glass/polymer interface under stable and unstable crack growth conditions are
simulated. The phenomenon of dynamic crack ``pop-in'' along the glass/polymer interface is also investi-
gated. The need for modeling stable crack growth under quasi-static conditions and unstable crack growth
under dynamic conditions requires the use of an implicit dynamic solution framework. In the CSS test, the
glass/polymer interface experiences combined compression and shear. Cohesive elements experiencing
compression during the deformation process require numerical techniques that prevent the inter-penetra-
tion of the cohesive element surfaces. Contact algorithms have been used in the literature (Camacho and
Ortiz, 1996; Espinosa et al., 1998) to prevent inter-penetration of cohesive surfaces within an explicit ®nite
element solution framework. The use of such contact algorithms within the implicit dynamic ®nite element
solution framework would be computationally prohibitive as it would lead to computational costs asso-
ciated with the solution of momentum balance equations. These computations are in addition to those
associated with the Newton±Raphson iterations for the solution of the nonlinear ®nite element equations to
establish equilibrium. In this study a penalty formulation is used within the cohesive element framework to
prevent inter-penetration of cohesive surfaces under compression.

2. Compressive shear strength test description and analysis background

A schematic of the experimental setup of the CSS test is shown in Fig. 1. The specimen used in the test is
a three ply glass/polymer/glass composite laminate that may be held at di�erent angles between a lower
trolley which is free to translate in the horizontal direction and an upper block that moves vertically under
applied load. The specimen experiences a combined state of compression and shear under this loading. A
common use of this experiment is to measure adhesion between glass and poly(vinyl butyral) (Butaciteâ), a
polymer used in architectural glazing and automotive safety glass. The polymer undergoes large rubber-like

Fig. 1. Schematic drawing of the 45° CSS test.
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shear strains, which contributes to the bulk viscous dissipation. By recording the force and displacement of
the loading arm the shear strain and the macroscopic average shear stress across the specimen are obtained.
Fig. 2(a) shows the specimen prior to application of strain. Under monotonic straining, for ``low'' levels of
adhesion between polymer and glass surfaces, a stable crack nucleates at the free edge of specimen along
one of the glass/polymer interfaces. This crack undergoes stable growth along the interface, Fig. 2(b),
followed by a ®nal instability and unstable crack growth at a critical level of applied macroscopic shear
strain. Stable crack growth along the interface occurs predominantly in an opening mode by peeling of the
polymer from the glass surface until the instant of instability. The following unstable crack growth is
characterized by large amounts of sliding along the glass/polymer interface. Experimental macroscopic
shear stress and shear strain curves obtained in the CSS test for di�erent strain rates are shown in Fig. 3.
For a given rate of straining the measured macroscopic stress ®rst increases with increasing shear strain,

Fig. 2. (a) Micrograph showing a three-ply laminate near free corner. Striped markings on the surface have been produced by

evaporating a thin gold ®lm through a mask. These aid in visualizing the deformation of the specimen during the experiment. (b)

Micrograph showing a stable crack along the glass/polymer interface just prior to the instability at which the interface fails.
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during which stage stable crack propagation occurs, next attains a maximum, and ®nally drops suddenly
due to the unstable crack growth caused by the failure of the interface.

The data shown in Fig. 3 indicate that crack growth occurs in the presence of large, rate-dependent
material deformation. If one ignores rate dependence, bulk constitutive behavior can be modeled well by
hyperelasticity, which allows an energy release rate analysis. The normalized energy release rate,
C� � C=Uh, as a function of normalized crack length, a� � a=h, for crack growth along the glass/polymer
interface in a CSS test has been obtained (Jagota et al., 2000) for di�erent levels of applied shear strains, c.
Here, C is the energy release rate, U, the strain energy density in the polymer material under simple shear
strain, c, h, the polymer thickness, and a, the crack length. A typical energy release rate curve is shown in
Fig. 4 for the case of where the specimen is held at an angle of 45° with an applied shear strain, c � 0:5. For
an interface of strength, C�0 � C0=Uh, where C0 is the fracture energy, and, with a ¯aw of size, a�0, the
equilibrium crack location, a�e , is given by

C��a��ja�e � C�0: �1�
This location is stable if

dC��a��
da�

����
a�e

< 0: �2�

The following four di�erent crack growth behaviors are predicted:
1. Small crack limit, a�0 < a�1: the ¯aw remains stationary until, C� � C�0, at which point the ¯aw undergoes

unstable crack growth.
2. Short crack regime, a�1 < a�0 < a�2: the ¯aw remains stationary until, C� � C�0. The ¯aw then ``pops-in''

and is arrested on the descending part of the energy release curve. It then undergoes stable crack growth,
and eventually experiences unstable growth when C� � C�0 � C�3.

3. Intermediate crack regime, a�2 < a�0 < a�3: crack growth initiates when, C� � C�0. Subsequent crack growth
is stable until C� � C�0 � C�3, beyond which the crack propagates unstably.

Fig. 3. Experimental macroscopic shear stress and shear strain measured in the CSS test for di�erent strain rates.
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4. Long crack limit, a�0 > a�3: ¯aw remains stationary until C� � C�0, at which point the ¯aw would undergo
unstable crack growth.
Fig. 4 shows the variation in energy release rate for a ®xed strain, c. The peak, C�2, is found to increase

with shear strain. The minimum, C�3, has been found to be relatively insensitive to the applied shear strain.
The CSS experiment is chosen here as a vehicle for the demonstration of interfacial fracture modeling by

cohesive elements as it contains a rich variety of behaviors enumerated above under ®nite strains. Crack
growth in the stable range, a�2 < a�0 < a�3, has previously been analyzed by 2D quasi-static simulations
(Jagota et al., 2000). Analysis of crack growth under other regimes and crack growth conditions require the
use of techniques developed in this paper.

3. Computational model formulation

3.1. Bulk material constitutive behavior

An incompressible rate-independent hyperelastic model has been employed for the bulk polymer ma-
terial. The deviatoric stress, r0, for the incompressible hyperelastic material is given as (Ogden, 1984)

r0 � 2DEV
oW
oI1

��
� I1

oW
oI2

�
Bÿ oW

oI2

B2

�
; �3�

where, W �I1; I2� �
PN

r�s�1 Crs I1 ÿ 3� �r I2 ÿ 3� �s is the strain energy density functional; I1 and I2 are the ®rst
and second invariants of the right Cauchy±Green tensor, B, de®ned as B � FFT, F is the deformation
gradient tensor, and, Crs are material constants. For the special case, N � 1 and C01 � 0, the strain energy
density functional simpli®es to W �I1; I2� � C10�I1 ÿ 3�, and represents a neo-Hookean hyperelastic material
(Ogden, 1984). The deviatoric stress for the neo-Hookean material is then obtained as, r0 � 2C10�Bÿ
1=3I1I�, where I is the identity tensor, and 2C10 � G, is the shear modulus of the neo-Hookean material.
A simple shear deformation with shear strain, c, is experienced by the polymer material in the CSS test

Fig. 4. Energy release rate as a function of crack length for strain c � 0:5 (Jagota et al., 2000) showing di�erent regimes of stable and

unstable crack growth along the polymer/glass interface in a CSS test.
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far from the free edge. For this case, the strain energy density is given as, U � �1=2�Gc2, and the shear stress
in the neo-Hookean material is given as, r12 � Gc.

3.2. Cohesive zone model for interface

A typical eight-node cohesive element between two regular eight-node bulk ®nite elements is shown in
Fig. 5. The cohesive element describes the deformation and failure of the interface between the two bulk
®nite elements. A phenomenological potential, /(Dn, Dt1, Dt2), has been used to derive the tractions that
resist relative motion across the cohesive surfaces as, Tn � o/=oDn; Tt1 � o/=oDt1; Tt2 � o/=oDt2, where Tn,
Tt1, Tt2 are the normal and two tangential tractions across the interface, respectively. The particular form
employed in this study is a 3D generalization of the Xu and Needleman (1994) potential, augmented to o�er
resistance to inter-penetration of cohesive surfaces as

/�Dn;Dt1;Dt2� � C0 1

"
ÿ 1

�
� Dn

dcr

�
exp

�
ÿ Dn

dcr

�
exp

 
ÿ D2

t1 � D2
t2

d2
cr

!#
ÿ 1� ÿ H Dn� ��jD3

n; �4�

where, C0 is the fracture energy of interface, dcr, the characteristic critical opening displacement, H(Dn), the
Heaviside step function, j, the penalty parameter, and C0, the work done in separating the interface by
complete separation along either the normal or any one of the two tangential directions, respectively. The
potential employed here is fully reversible and the work of failure of the interface is path and rate inde-
pendent. The constitutive behavior described by the potential is completely speci®ed by the two parameters,
C0 and dcr. The penalty term in Eq. (4) is activated only under compression �Dn < 0� and does not a�ect the
work of interfacial separation. The penalty parameter is estimated as, j � G=h2

e , where G is the shear
modulus of the bulk material, and he is the size of the cohesive element. G is estimated for an hyperelastic
material as the average of the material coe�cients C10 and C01. This choice of parameter, j, is large enough
to suppress inter-penetration of cohesive surfaces without adversely a�ecting the numerical conditioning of
the global set of equations. Fig. 6(a) shows a plot of the normal traction Tn across the cohesive surface as
obtained by employing the penalty augmented potential of Eq. (4) along with the normal traction as ob-
tained by the Xu and Needleman (1994) potential. Fig. 6(b) shows the variation of tangential traction Tt1.
The variation of tangential traction Tt2 is similar to that of tangential traction, Tt1. The maximum normal
and tangential tractions are obtained as rmax

n � C0=edcr and smax
t1 � �������

2=e
p

C0=dcr for the respective condi-
tions, Dt1 � Dt2 � 0, and, Dn � Dt2 � 0, where, e � exp�1�, is the Euler number. The crack tip is de®ned as

Fig. 5. Schematic drawing of an eight-node cohesive element between two 3D eight-node bulk elements and the local coordinate system

used to de®ne the tractions and openings.
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the location along the interface where the combined openings (Dn, Dt1, Dt2) of the interface satisfy the
relationship:

1

"
ÿ 1

�
� Dn

dcr

�
exp

�
ÿ Dn

dcr

�
exp

 
ÿ D2

t1 � D2
t2

d2
cr

!#
� 1ÿ 2

e
: �5�

The work done in opening the cohesive zone as given by Eq. (4) under pure normal opening �Dt1 � Dt2 � 0�
evaluates to, (1ÿ 2=e)C0, for Dn � dcr. The crack-tip location as identi®ed by Eq. (5) ensures that the work
done in opening the interface by a combination of openings (Dn, Dt1, Dt2) at the crack tip equals the work
done under pure normal separation, (1ÿ 2=e)C0. This de®nition of the crack-tip location is consistent with
the potential de®ned in Eq. (4).

The actual cohesive law governing the failure process along the interface is often found to be rate de-
pendent (Rahul-Kumar et al., 1999; Jagota et al., 2000). However, for the sake of demonstrating the ability
of the cohesive element approach to model the variety of crack propagation behaviors observed in the CSS

Fig. 6. (a) Normal tractions across cohesive surface with and without penalty augmentation in compression (Dn < 0) for Dt1 � Dt2 � 0.

(b) Tangential shear tractions across the cohesive surface for Dn � Dt2 � 0.
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experiment, it su�ces for us to represent the bulk by continuum hyperelasticity, and the interface by a
phenomenological rate-independent cohesive model. If one adopts this approximation, the fracture
toughness includes contributions from the bulk viscous losses and fracture processes occurring in the crack-
tip cohesive zone (Jagota et al., 2000). Such an analysis could be performed for various experimental strain
rates shown in Fig. 3, where the hyperelastic constants Crs are calibrated to ®t an experimentally measured
stress±strain curve at a speci®ed strain rate.

3.3. Numerical formulation

Cohesive zone models have been implemented as cohesive ®nite elements within an implicit ®nite element
framework. The principle of virtual work accounting for inertial e�ects and cohesive zone forces is given asZ

V
qadV �

Z
V

r : dddV �
Z

S
T : d _D

1

J
dS ÿ

Z
A

F : dvdA � 0; �6�

where q is the material density, a, the acceleration, r, the Cauchy stress tensor; dd, the virtual rate of de-
formation tensor; T, the vector of cohesive tractions; d _D, the vector of virtual velocity jumps across the
cohesive surface, F, the vector of externally applied tractions, dv, the vector of the virtual velocity ®eld, V, the
current volume of the bulk material, S, the current internal surface area over which the cohesive forces are
acting, A, the current external surface area over which the external tractions are applied, and J, the Jacobian
of the transformation between the current deformed and original undeformed areas of the cohesive surfaces.
The third term in Eq. (6) represents the contribution to virtual work due to cohesive zone tractions. A spatial
discretization of this term and its ®rst variation by using cohesive elements leads to the internal force vector,
Fint

c , and an approximate form of the tangent sti�ness matrix, Kc, (Rahul-Kumar et al., 1999, 2000) as

Fint
c �

Z
S

AT T
1

J
dS; �7�

Kc �
Z

S
AT DA

1

J
dS; �8�

where A is a matrix of cohesive element shape functions that relates the cohesive element nodal velocities, v,
to velocities of displacement jumps, _D, within the cohesive element as

_D � Av; �9�
where D is the cohesive element constitutive matrix that relates the incremental tractions, dT, to incre-
mental displacement jumps, dD, within the cohesive element as

dT � DdD; �10�
where

D �
oTn
oDn

oTn
oDt1

oTn
oDt2

oTt1
oDn

oTt1
oDt1

oTt1
oDt2

oTt2
oDn

oTt2
oDt1

oTt2
oDt2

264
375: �11�

The ®nite element spatial discretization of the virtual work expression in Eq. (6) at time t � Dt is written as

M�u� Fint ÿ Fext � 0; �12�
where M is the mass matrix, �u is the vector of nodal accelerations, and Fint and Fext are the internal and
external force vectors respectively, at time t � Dt. The internal force vector, Fint, has contributions from
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cohesive element tractions, Fint
c , and the bulk elements stresses, Fint

b . The development of the cohesive el-
ement for the use in an implicit dynamic procedure within the nonlinear ®nite element analysis code
ABAQUSâ (1997) is performed by using the Hilber et al. (1978) implicit time integrator for the temporal
discretization of Eq. (12). In this procedure, the equilibrium (12) at time t � Dt is replaced by a weighted
average of equilibrium statements at times t and t � Dt, respectively. The resulting virtual work equation is
written as

r�a; ut�Dt� �M�ut�Dt � �1� a��Fint
t�Dt ÿ Fext

t�Dt� ÿ a�Fint
t ÿ Fext

t � � 0; �13�
where a de®nes the intermediate con®guration between times t and t � Dt; and ut�D t is the vector of nodal
displacements at time t � Dt. Eq. (13), along with the Newmark time integration formulae, forms the basis
of the ``predictor'' step and the iterative Newton±Raphson ``corrector'' steps in solving for the con®gu-
ration at time t � Dt (Cris®eld, 1997). The tangent matrix, K

i
t�Dt, and the residual, ri(a; ui

t�Dt), used in the
Newton±Raphson corrective iterations, i, are obtained by the linearization of the residual r�a; ut�Dt� given
by Eq. (13) about the current iterative con®guration, ui

t�Dt, as

K
i
t�Dt � 1� � a�Ki

t�Dt � 1� � a�d _ut�DtC
i
t�Dt � d�ut�DtM; �14a�

ri�a; ui
t�Dt� �M�ui

t�Dt � �1� a��Fint;i
t�Dt ÿ Fext;i

t�Dt� ÿ a�Fint;i
t ÿ Fext;i

t �; �14b�
where Ki

t�Dt is the static tangent sti�ness matrix, Ci
t�Dt, the damping matrix, d _ut�Dt and d�ut�Dt are the

variations in nodal displacements and nodal accelerations, respectively. These are obtained from the
Newmark integration formulae in terms of time the integration parameters and the time step size, Dt,
(Cris®eld, 1997). The damping matrix Ci

t�Dt is absent when the bulk polymer is modeled as an hyperelastic
material. A cohesive element in which the constitutive calculations relate the tractions within the element to
the openings across the element faces, the contributions to the damping and mass matrices as well as ex-
ternal loads are absent. The resulting tangent sti�ness matrix and the residual vector for a cohesive element
given in Eqs. (14a) and (14b) for the use in an implicit dynamic procedure simplify to

K
i
t�Dt � �1� a�Ki

t�Dt; �15a�

ri�a; ui
t�Dt� � �1� a�Fint;i

t�Dt ÿ aFint;i
t : �15b�

The various quantities used in the evaluation of Eqs. (15a) and (15b) can be obtained by evaluating Eqs. (7)
and (8) at times t and t � Dt, respectively. The constitutive calculations and the integrations of internal force
vector and tangent sti�ness matrix for these cohesive elements are performed on the mid-surface of the
cohesive element (Fig. 5). This mid-surface is de®ned by the corresponding shape functions of the cohesive
element and the coordinates that are an average of the current top and bottom cohesive element nodal
coordinates. Eqs. (15a) and (15b) have been implemented as user elements in the nonlinear ®nite element
code ABAQUSâ (1997) for a family of 2D and 3D cohesive elements.

4. Dynamic crack growth in elastic double cantilever beam

Dynamic crack growth along an elastic double cantilever beam (DCB) has been studied to verify the
implicit dynamic cohesive element procedures described. An elastic DCB specimen is opened at its free end
at a speci®ed constant velocity leading to the crack-tip propagating at a nonuniform velocity. The geometry
of the DCB problem along with the loading conditions is shown in Fig. 7(a). An approximate analytical
solution under small deformation assumptions using the Euler±Bernoulli beam theory was given by Bilek
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and Burns (1974). The solution predicts that the quantity L2�t�=t remains constant, where L�t� is the crack
length at time, t.

The DCB geometry has been modeled using (a) 2D, four-node plane stress elements with four-node
cohesive elements, and, (b) 3D, eight-node brick elements with eight-node cohesive elements. Based on
symmetry considerations, only one arm of the DCB is modeled here. Finite element meshes along with the
kinematic and symmetry boundary conditions are shown in Figs. 7(b) and (c) for the 2D and 3D analysis,
respectively. The 3D mesh has ®ve elements through the depth and thickness of the beam. Cohesive ele-
ments are placed for the entire length of the DCB along the plane of symmetry, y � 0. The nodes on the top
face of the cohesive elements are constrained to have the same displacement in the x direction as the
corresponding nodes on the bottom face. The DCB geometry, material, and cohesive element parameters
employed in the analysis are h � 0:25 m, w � 0:125 m for the 2D plane stress and 3D models, Ve � 31:62 m/
sec, E � 100 GPa, q � 2000 kg/m3, C0 � 106 N/m, dcr � 0:01 m. The crack length, L�t�, is de®ned by Eq. (5).

Fig. 7. (a) Schematic of the dynamic elastic DCB problem. (b) 2D Finite element discretization. (c) 3D Finite element discretization.
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A plot of the quantity, L2�t�=t, versus time, t, as obtained from the 2D and 3D simulations has been
compared with the respective approximate analytical results of Bilek and Burns (1974) in Fig. 8. The
numerical solutions converge to the constant analytical solutions as L�t� increases with time, t, thus vali-
dating the cohesive element implementation. The small oscillations in the computed values of L2�t�=t, are an
indication of transient vibrations in the beams during dynamic crack growth as analyzed by Williams
(1999).

5. 2D analysis of crack propagation in compressive shear strength test

The crack growth behaviors for di�erent sizes of the pre-¯aw, a�0, along the glass/polymer interface have
been simulated using cohesive elements. These simulations verify the stable and unstable crack growth
regimes described in Section 4 and demonstrate the ability of cohesive element technique to model various
crack growth behaviors in interfacial failures.

A 2D plane strain model of the CSS test specimen with polymer thickness, h � 0:76 mm, has been used
in this study. A representative ®nite element discretization of the model, employing four-node hybrid el-
ements for the polymer and regular four-node displacement based elements for glass is shown in Fig. 9. A
layer of four-node cohesive elements is placed along the interface between the polymer and glass. The mesh
has a starter region adjacent to the free edge of size 8h along the length with cohesive elements of size 0.05h.
The loading consists of specifying displacements, ux � 0 and uy � ch=

���
2
p

, for the nodes on the top surface
of bulk polymer elements. The boundary conditions for the nodes on the bottom surface of the glass el-
ements are speci®ed as Tx � 0, and uy � 0. The polymer material has been modeled as a neo-Hookean
hyperelastic material with material constant, C10 � �1=2�G � 1:66� 105 Pa, and density, q � 1070 kg/m3.
Glass has been modeled as a rigid substrate.

A quasi-static simulation of the CSS test has been performed using discretizations similar to the one
described above employing cohesive elements of size 0.05h and smaller to investigate the mesh sensitivity of
the computed results. The simulations have been performed for an applied shear strain, c � 1:1. A pre-¯aw
of size a0 � 0:25h in the intermediate crack regime has been placed along the interface to avoid the initial

Fig. 8. Dynamic crack growth in a 2D and 3D elastic DCB using 2D four-node and 3D eight-node cohesive elements.
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instability in crack growth for smaller pre-¯aw sizes. The cohesive zone model parameters employed are
C0 � 4:95 N/m, and dcr � 10 lm. The crack length, a, is de®ned by Eq. (5). The computed normalized
crack length, a�, as function of applied strain, c, for the various discretizations employed revealed negligible
mesh sensitivity. The normalized fracture energy, C0, as a function of the normalized crack length, a�, have
also been compared and the results have been found to be insensitive to the discretization.

The performance of the cohesive element method based on penalty formulation of Eq. (4) for avoiding
the inter-penetration of the cohesive surfaces under compression has been compared against the Lagrange
multiplier based technique for enforcing contact constraints in ABAQUSâ (1997) program. The di�erences
in the computed results for the normalized fracture energy, C0, as a function of the normalized crack length,
a�, have been found to be insigni®cant for the two methods used to enforce the contact constraints.

5.1. Intermediate crack analysis (a�2 < a�0 < a�3)

As discussed in Section 2, a pre-¯aw in the intermediate crack regime, a�2 < a�0 < a�3, is predicted to grow
stably upto a critical shear strain, c�, and unstably thereafter. A family of energy release rate curves for
various levels of applied shear strain c were obtained by Jagota et al. (2000) and have been plotted as
dashed line curves in Fig. 10. The minimum, C�3, in energy release rate curves has been found to be relatively
insensitive to the applied shear strain, c. An empirical linear ®t for the variation in, C�3, as a function of, c,
has been developed by Jagota et al. (2000) and reported as, C�3 � 0:0717� 0:00574c. At the instant of in-
stability, C�3 � C�0, and, U � �1=2�Gc�2, for neo-Hookean hyperelasticity. The relationship between the
strength of the interface, C0, and the critical strain to instability, c�, is then obtained as

C0 � 1

2
Gh�0:0717� 0:00574c��c�2: �16�

Fig. 9. Representative ®nite element discretization used in the CSS simulations.
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For an interface characterized by, C0 � 4:95 N/m, the critical shear strain at instability, c�, and the
normalized fracture energy at instability, C�0, are obtained as 0.72 and 7:58� 10ÿ2, respectively. For an
interface of strength, C0, the equilibrium crack location a�e for various levels of applied shear strain c based
on an energy release rate analysis is given by Eq. (1). The crack growth obtained by solving Eq. (1) for
C0 � 4:95 N/m for various levels of applied shear strain c with an initial pre-¯aw of size 0.25h has been
plotted as the dark solid line curve in Fig. 10. The crack growth so predicted is referred to as the, ``energy
release rate crack growth''.

In a CSS test simulation with cohesive elements characterized by, C0 � 4:95 N/m and dcr � 10:0 lm, the
crack growth from an initial pre-¯aw of size 0.25h in the intermediate crack regime is expected to be stable
until the applied shear strain reaches 0.72. A quasi-static simulation of the CSS test has been performed
using the discretization shown in Fig. 9. A plot of normalized fracture energy, C�0, as a function of the
normalized crack length, a�, as obtained by from the quasi-static simulation has been plotted in Fig. 10. The
crack growth predicted by cohesive element modeling agrees well with the energy release rate crack growth
prediction. At C�0 � C�3, crack growth is unstable and cannot be modeled by the static solution procedure.
The quasi-static simulation terminates here due to numerical instabilities resulting from unstable crack
growth. The instant of instability in terms of applied shear strain de®ned through C�0, obtained using quasi-
static simulation employing cohesive elements is in agreement with the 2D plane strain energy release rate
analysis. However, as seen from Fig. 10 there is a small discrepancy in terms of the normalized crack
lengths when the crack growth goes unstable.

Fig. 10. Comparison of normalized fracture energy predicted by static analysis and dynamic analysis employing cohesive elements with

energy release rate crack growth prediction based on Eq. (1). The dashed line curves are energy release rate curves for various levels of

applied shear strain c as developed by Jagota et al. (2000).
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The dynamic analysis of the CSS test employing the discretization shown in Fig. 9 with cohesive ele-
ments characterized by the above stated parameters has been performed. The predicted normalized fracture
energy, C�0, as a function of normalized crack length, a�, has been plotted in Fig. 10. Predictions from quasi-
static and dynamic simulations are in good agreement over the solution history. The dynamic analysis
simulation proceeds beyond the instability limit predicted by Eq. (16) based on the energy release rate
analysis. The crack eventually goes unstable when, C�0 � 4:0� 10ÿ2, as evident by the zero slope of the
dynamic analysis curve. The di�erence between the values of C�0 at instability as predicted by a quasi-static
energy release rate analysis versus the dynamic analysis is attributed to the ®nite rate of loading in the
dynamic simulation. A normalized measure of the shear strain rate in the dynamic simulation is, _ch=c,
where, _c is the applied shear strain rate, and, c � ���������

G=q
p

, the shear wave speed in the polymer material. The
value, C�0 � 4:0� 10ÿ2, corresponds to a normalized rate of straining of, _ch=c � 6:4� 10ÿ3. It has been
observed that as the applied shear strain rate is decreased, C�0 at instability increases, and approaches the
limit 7:58� 10ÿ2 predicted by quasi-static energy release rate analysis.

Plots of the deformation sequence and the location of the crack tip from the dynamic analysis simulation
are shown in Fig. 11(a)±(e). Fig. 11(a) and (b) show the deformation and crack openings prior to instability.

Fig. 11. (a±e) Deformation sequences for a CSS test simulation with an initial pre-¯aw size in the intermediate crack length regime.
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Fig. 11(c) shows the deformation at the instant when the crack goes unstable. Fig. 11(d) shows the de-
formation after the instability when considerable sliding occurs along the interface. The polymer starts to
unload and begins to recover its original con®guration. Fig. 11(e) shows complete separation of the
polymer and glass surfaces. The polymer unloads and completely recovers its original con®guration. This
sequence of deformations is in good agreement with the experimental deformations shown in Fig. 2(a) and
(b).

5.2. Short crack analysis (a�1 < a�0 < a�2)

In this regime of pre-¯aw sizes crack growth in a CSS test is predicted to ``pop-in'' at a certain critical
strain level and grow dynamically to a crack length in the intermediate crack length regime. Subsequently,
upon continued straining, the crack undergoes stable crack growth and eventually goes unstable. For an
interface characterized by, C0 � 4:95 N/m, the energy release rate crack growth from a pre-¯aw in the short
crack regime of size, a0 � 0:05h, as obtained by solving Eq. (1) has been plotted as the dark solid line in Fig.
12. Based on the plot, it is observed that the pre-¯aw would pop-in at a normalized fracture energy,
C�0 � 0:29, to a normalized crack length of a� � 0:33. This dynamic pop-in of the crack is followed by stable
crack growth and ®nal instability at a normalized fracture energy, C�0 � 7:58� 10ÿ2, corresponding to a
critical shear strain, c� � 0:72.

A dynamic analysis has been performed to study crack growth from a pre-¯aw of size, a0 � 0:05h, in the
short crack regime. The cohesive zone parameters employed in the simulation are: C0 � 4:95 N/m,

Fig. 12. Normalized fracture energy as a function of normalized crack length as obtained by dynamic analysis employing cohesive

elements for simulating crack growth from di�erent initial pre-¯aw sizes in a CSS test with interface fracture energy C0 � 4:95 N/m.

The dark solid line curves are the corresponding energy release rate crack growth predictions based on Eq. (1).
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dcr � 10:0 lm. The predicted normalized fracture energy, C�0, as obtained from this simulation has been
plotted in Fig. 12. The crack growth behavior predicted by cohesive element technique does not reveal such
a sharp ``pop-in'' response. It is observed that crack growth continues under stable conditions and the
interface fails at normalized fracture energy, C�0 � 4:0� 10ÿ2. The energy release rate approach is based on
the idealization of a ``mathematically'' sharp crack tip. The size of the cohesive zone, L, at the instant when
crack growth initiates from the pre-¯aw has been computed in the present analysis to be 0.37h. The cohesive
zone tip is identi®ed as the location along the interface where the combined openings, Dn, Dt1, and Dt2 � 0,
evaluate the potential in Eq. (4) to one percent of the work required for pure normal separation,
(1ÿ 2=e)C0. The distance between the crack tip as identi®ed by Eq. (5) and the cohesive zone tip is reported
as the cohesive zone size, L. The presence of such a large cohesive zone in the glass/polymer interface during
crack initiation smears the crack-tip zone and the crack tip cannot be characterized as ``mathematically
sharp''. This results in stable crack growth without the ``pop-in''. The results for the simulation with a pre-
¯aw in the intermediate crack size regime from earlier analysis in Section 5.1 have also been plotted in Fig.
12. The corresponding energy release rate crack growth prediction has been plotted as the dark solid line.
As expected the normalized fracture energy C�0 at ®nal instability for the short-crack and intermediate crack
length simulations are in agreement.

The e�ect of cohesive zone size, L, varied via the dcr parameter, on the simulated ``pop-in'' response has
been investigated. The evolution of the normalized cohesive zone size, L/h, as a function of the normalized
crack length, a�, for di�erent values of dcr ranging between 2.5 and 20 lm have been plotted in Fig. 13. This
range of dcr has been found suitable for modeling the cohesive zone in the experiments (Jagota et al., 2000).

Fig. 13. Evolution of normalized cohesive zone size for di�erent values of the dcr parameter employed during the CSS test simulation

with a pre-¯aw in the short crack regime.
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The cohesive zone sizes start out in the range 0.27±0.46h at the instant when crack growth initiates
from the pre-¯aw. It decreases in size for a given dcr as the crack grows. The initiation of crack growth
from the pre-¯aw in the glass/polymer interface is thus characterized by the presence of relatively large
cohesive zone sizes precluding the existence of ``pop-in''. The predicted crack growth responses in terms of
normalized fracture energy, C�0, for various values of dcr values have been plotted in Fig. 14. It is observed
that as dcr decreases the crack growth from the pre-¯aw initiates at progressively smaller values of C�0. For
dcr � 2:5 lm, crack growth from the pre-¯aw does not initiate till the normalized fracture toughness of the
interface, C�0, reaches the initial rising part of the energy release rate curve and agrees well the energy
release rate based response for crack pop-in. At this instant, the crack growth occurs in a mild pop-in-like
fashion as evident by the relatively large increase in the crack length for a small change in the normalized
fracture energy, C�0. Fig. 15 shows a plot of rate of change in crack length as a function of the applied
shear strain, c. Crack initiation from the pre-¯aw is progressively delayed with decreasing value of dcr.
From Fig. 15, it is observed that for the case of dcr � 2:5 lm crack initiation from the pre-¯aw is com-
pletely suppressed till the applied shear strain attains a critical value of 0.39 compared to shear strain at
pop-in of 0.37 as predicted by the energy release rate approach. The sudden rise in the rate of change in
crack length leads to rapid growth which proceeds till the crack length reaches a length in the intermediate
crack length regime.

The results of the present analyses indicate that the sizes of the cohesive zones in glass/polymer interface
are comparable to the thickness of the polymer material during crack initiation from these pre-¯aws. Prior
to any crack growth, under increasing applied shear strain, the crack-tip cohesive zone ®rst develops ahead
of the pre-¯aw, i.e., the crack tip at the pre-¯aw encounters an ÔR-curveÕ. The presence of such a large
cohesive zone along the glass/polymer interface and the increasing resistance to crack growth leads to stable

Fig. 14. ``Pop-in'' response from a pre-¯aw in the short crack regime in terms of normalized fracture energy and normalized crack

length for di�erent values of the parameter dcr.
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crack nucleation at the free edge from existing pre-¯aws and subsequent stable growth as observed in the
CSS experiments, and di�erent from prediction based on an energy release rate analysis.

5.3. Long crack analysis (a�0 > a�3)

For pre-¯aws, a�0 > a�3, energy release rate analysis predicts the crack growth to be unstable when the
applied shear strain reaches a critical value. No crack growth is expected for shear strains below the critical
value. For an interface characterized by, C0 � 4:95 N/m, the energy release rate crack growth from a pre-
¯aw in the long crack regime of size, a0 � 1:25h, as obtained by solving Eq. (1) has been plotted as the dark
solid line in Fig. 12. It is observed that there is no crack growth from the pre-¯aw until the normalized
fracture energy, C�0 � 0:15, corresponding to a shear strain of, c � 0:51. Subsequently, the crack goes
unstable.

A dynamic simulation of the CSS test has been performed with a pre-¯aw size of a0 � 1:25h, with co-
hesive zone model parameters, C0 � 4:95 N/m and dcr � 10 lm. The predicted normalized fracture energy,
C�0, as function of the normalized crack length, a�, has been plotted in Fig. 12. It is observed that crack
growth does not initiate till the strain reaches a critical value. This is evident from the vertical drop in the
response for decreasing normalized fracture toughness C�0 corresponding to increasing shear strain, c. For
the cohesive zone model properties employed here, at a normalized fracture energy, C�0 � 0:1, corre-
sponding to a critical shear strain of, c � 0:63, the crack growth for the pre-¯aw goes unstable. The energy
release rate analysis predicts unstable crack growth for, C�0 � 0:15. The di�erence, as explained before,
arises due to the ®nite shear strain rate, _ch=c � 6:4� 10ÿ3, employed in the dynamic simulation.

Fig.15. ``Pop-in'' response in terms of normalized rate of change of crack length, �1=h�da=dc, with applied shear strain, c, for di�erent

values of the parameter dcr.
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6. 3D analysis of crack propagation in compressive shear strain test

A 3D analysis of the CSS test has been performed by employing 3D cohesive elements and an hyper-
elastic material model for the polymer. The 3D ®nite element discretization employed in the study is shown
in Fig. 16. The dimensions of the 3D CSS test specimen used in the 3D numerical study are polymer
thickness, h � 0:76 mm, length� 25 mm, and width� 4:56 mm (6h). Based on symmetry about the x±y
plane, one half of width (3h) is modeled in the z direction. The polymer is modeled by using eight-node
hybrid brick elements, and glass is modeled using regular displacement based eight-node brick elements. A
layer of 3D eight-node cohesive elements is placed along the interface between the polymer and glass. The
size of cohesive elements in the ®ne discretized region in Fig. 16 at the free edge, z � 3h, are of dimension
0.047h along the length and 0.094h along the width. The 3D discretization consists of 48,900 degrees of
freedom. The boundary conditions for the nodes on the bottom surface of the glass elements are speci®ed
as, Tx � 0, uy � 0, Tz � 0. The nodes on the symmetry face, z � 0, have, uz � 0. The loading consists of
specifying displacements, ux � 0; uy � ch=

���
2
p

, and uz � 0, for the nodes on the top surface of bulk polymer
elements, where c is the equivalent shear strain in the polymer material. The polymer material has been
modeled as a neo-Hookean hyperelastic material with material constant, C10 � �1=2�G � 1:66� 105 Pa.
Glass has been modeled as a rigid substrate. The cohesive zone parameters are: C0 � 4:95 N/m, and
dcr � 10:0 lm. An implicit-dynamic analysis has been performed to simulate the stable and unstable crack
growth along the interface.

Fig. 16. Finite element discretization of one-half of the CSS test specimen employed in the 3D simulation of the test.
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The dynamic simulation has been performed for an initial pre-¯aw of size a0 � 0:25h, which lies in the
intermediate crack regime. The evolution of crack front in the simulation along the interface for di�erent
levels of applied shear strain has been plotted in Fig. 17. For a given level of applied shear strain the crack
front contour is obtained by joining points along the interface where the openings (Dn, Dt1, Dt2) satisfy the
relationship (5). Failure initiates ahead of the pre-¯aw at an applied shear strain of, c � 0:183, and is lo-
calized in the region near the free edge. At an applied shear strain, c � 0:281, a tunneling of the failure
located at the edges occurs and the crack front occupies the entire width of the specimen. The crack front at
this instant is relatively straight. For progressively increasing shear strain, the crack front moves along the
interface by developing a ®nite curvature at the free edge. About a distance of 2h from the free edge the
crack front becomes straight implying plane strain conditions. Moving from the interior towards the free
edge, crack length increases, attains a maximum value, and decreases near the free edge. At an applied shear
strain of c � 0:704 instabilities occur in the 3D simulation due to a local ``pop-through'' of the crack front
at the free edge. At an applied strain of c � 0:782, the crack front at the free edge undergoes a complete
pop-through and the crack front curvature changes sign. At this instant, the crack is longer at the free edge
when compared to interior of the specimen. Similar crack front pro®les have been observed experimentally
for crack growth along glass/epoxy interface (Swadener and Liechti, 1998). Finally, unstable crack growth
and failure of the interface occurs at a strain of c � 0:868.

Contour plots of the openings, Dn, Dt1, Dt2, along the interface for applied shear strain, c � 0:81, are
shown in Fig. 18. The tangential openings Dt1, Dt2 are localized near the free edge and vanish within the
distance, 2h. At the free edge, they are of magnitude comparable to Dn. Nakamura (1991) conducted 3D

Fig.17. Evolution of failure and crack front along the interface in CSS test specimen for polymer modeled as Neo-Hookean hyper-

elastic material.
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®nite element analysis for an interfacial crack between elastic material and rigid substrate and ®nds similar
results for the openings at the free edge. The local energy release rate is considerably larger at the free edge
than at the interior. This leads to the curvature of the crack front at the free edge.

The predicted normalized fracture energy, C�0, as a function of the normalized crack length, a�, has been
plotted in Fig. 19. The crack length, a, for the 3D simulation is de®ned as the location along the free edge,
z � 3h, where the openings (Dn, Dt1, Dt2) satisfy the relationship (5). For comparison purposes, the results of
the 2D plane strain dynamic simulation from Section 5.1 employing same parameters for the polymer and
the cohesive zone have also been plotted in Fig. 19. The 3D simulation predicts unstable crack growth at a
normalized fracture toughness, C�0 � 5:2� 10ÿ2 compared to the value of C�0 � 4:0� 10ÿ2 as predicted by
2D plane strain analysis.

7. Conclusions

A family of cohesive elements for the use in static and implicit dynamic ®nite element procedures has
been developed. When introduced between regular continuum elements, these provide a powerful tool for

Fig. 18. Contours of openings, Dn, Dt1, Dt2, ahead of the pre-¯aw along the glass/polymer interface at failure strain, c � 0:81.
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the study of fracture in situations not easily amenable to analysis using conventional techniques of fracture
mechanics. The cohesive element family has been developed for the use with standard implicit ®nite element
methods. The ability of the technique to model two- and three-dimensional, dynamic and quasi-static crack
growth has been demonstrated by analyzing interfacial failures in a CSS test for polymer/substrate adhe-
sion.

The following three types of crack growth are predicted in this experiment based on energy release rate
analysis. Long cracks remain stationary until critical strain, and then propagate unstably. Pre-cracks with
an intermediate length remain stationary until a critical applied strain, then grow stably, and eventually
propagate unstably at a critical value of applied strain. Small cracks are predicted to remain stationary until
a critical strain, to pop-in dynamically, grow stably, and eventually to propagate unstably at the same
critical value of applied strain as intermediate length pre-cracks. Crack growth with pre-cracks in these
three ranges of lengths have been analyzed using an hyperelastic constitutive equation for the bulk polymer
and cohesive elements to represent the polymer/substrate interface. The dynamic cohesive element tech-
nique is able to capture all types of predicted behavior. For cracks in the intermediate length regime,
dynamic and static results are in good agreement. Di�erences in critical strain at ultimate interfacial failure
between the two result from ®nite rate of loading in the dynamic analysis.

For short cracks, the cohesive zone sizes are substantial in size compared to the polymer thickness, for
physically realistic values of critical cohesive opening size, dcr. Due to the presence of such large cohesive
zone at the crack tip, crack growth from such short cracks experiences a ÔR-curveÕ with increasing value of
applied shear strain. The ®nite size of cohesive zone and the ÔR-curveÕ like resistance experienced by the
crack tip causes the dynamic pop-in as predicted by quasi-static energy release rate analysis to be stabilized

Fig. 19. Normalized fracture energies as obtained by 2D plane strain and 3D dynamic simulations of a CSS test with C0 � 4:95 N/m.

The crack growth based on 2D plane strain energy release rate analysis as given by Eq. (1) is shown as the dark solid line curve.
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in the cohesive element simulations. As dcr is reduced, the crack propagation behavior resembles a dynamic
crack pop-in.

Free edge e�ects in the CSS experiment have been studied by three-dimensional analyses. Signi®cant
mixed mode deformation has been found up to a distance of twice the polymer thickness from the free edge,
as measured by relative tangential displacements across the cohesive zone. The associated increase in local
energy release rate near free edge causes crack length to be longer there. The 3D implicit-dynamic simu-
lation is able to capture the stable and unstable parts of the crack growth in the CSS test. The simulation
also reveals that the crack front undergoes a local ``pop-through'' at the free edge accompanied by local
instabilities.

These examples demonstrate the ability of the cohesive element technique to model interfacial crack
growth under a variety of conditions. The technique has the ability to model crack initiation and growth
under complex conditions such as ®nite strains, inelastic material behavior, static and dynamic growth
conditions. Crack initiation and growth criteria are speci®ed within the cohesive zone model itself, which
simpli®es analysis considerably compared to, for example, methods based on domain integrals that re-
quire additional post-processing. In addition to the fracture energy, cohesive zone models involve other
fracture parameters, such as characteristic opening displacement and maximum cohesive tractions. It is
important to obtain accurate characterization of these parameters, especially when the bulk deforms
inelastically.
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